A curiosity model for artificial agents
نویسندگان
چکیده
Curiosity is an inherent characteristic of the animal instinct, which stimulates the need to obtain further knowledge and leads to the exploration of the surrounding environment. In this document we present a computational curiosity model, which aims at simulating that kind of behavior on artificial agents. This model is influenced by the two main curiosity theories defended by psychologists – Curiosity Drive Theory and Optimal Arousal Model. By merging both theories, as well as aspects from other sources, we concluded that curiosity can be defined in terms of the agent’s personality, its level of arousal, and the interest of the object of curiosity. The interest factor is defined in terms of the importance of the object of curiosity to the agent’s goals, its novelty, and surprise. To assess the performance of the model in practice, we designed a scenario consisting of virtual agents exploring a tile-based world, where objects may exist. The performance of the model in this scenario was evaluated in incremental steps, each one introducing a new component to the model. Furthermore, in addition to empirical evaluation, the model was also subjected to evaluation by human observers. The results obtained from both sources show that our model is able to simulate curiosity on virtual agents and that each of the identified factors has its role in the simulation.
منابع مشابه
A computational model of achievement motivation for artificial agents
Computational models of motivation are tools that artificial agents can use to autonomously identify, prioritize, and select the goals they will pursue. Previous research has focused on developing computational models of arousal-based theories of motivation, including novelty, curiosity and interest. However, arousal-based theories represent only one aspect of motivation. In humans, for example...
متن کاملAn Analysis to Wealth Distribution Based on Sugarscape Model in an Artificial Society
In this paper an artificial society is being assumed as a multi agents system. A sugarscape model consisting of a cellular landscape of resources is used to form an interaction among the agents of the population. In the model, agents find the resources to survive. They are supposed to move and search and because of this movement, an evolutionary social behavior will develope. From model analys...
متن کاملCombining artificial curiosity and tutor guidance for environment exploration
In a new environment, an artificial agent should explore autonomously and exploit tutoring signals from human caregivers. While these two mechanisms have mainly been studied in isolation, we show in this paper that a carefully designed combination of both performs better than each separately. To this end, we propose an autonomous agent whose actions result from a user-defined weighted combinati...
متن کاملCuriosity Search: Producing Generalists by Encouraging Individuals to Continually Explore and Acquire Skills throughout Their Lifetime
Natural animals are renowned for their ability to acquire a diverse and general skill set over the course of their lifetime. However, research in artificial intelligence has yet to produce agents that acquire all or even most of the available skills in non-trivial environments. One candidate algorithm for encouraging the production of such individuals is Novelty Search, which pressures organism...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کامل